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Abstract

The aim of this paper is to excite the reader about a symbiosis of two seemingly
disjoint fields: neuroscience and mathematics. Specifically, we begin with a pecu-
liar experimentally-derived observation from the field of neuroscience: “orientation
maps” derived by optical imaging of the visual cortex of the mammalian brain, and
how a specific property of these maps appears to hover around the mathematical con-
stant π. We then notice interesting geometric patterns that lend naturally to transla-
tional and rotational symmetry constraints. From here, we employ these constraints to
build mathematical models for these observations. Finally, we use the theory behind
these mathematical models to advance our biological understanding.
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1 Introduction

This paper explores some mathematical theory behind an observation from the field of
neuroscience. We will first build a brief foundation of the neuroscience relevant for this
paper, particularly how columns of neurons in the visual cortex of the mammalian brain
respond preferentially to light oriented at certain angles. We will then see how from brain
recordings, we can create “orientation maps” describing orientation selectivity in different
parts of the visual cortex. From the geometry of these observed orientation maps yields an
interesting finding: the density of “pinwheels” (singularity points) roughly equals π. Next
in Section 2, we will think geometrically about these observed map patterns and deduce
symmetry constraints. We will apply these symmetry constraints to mathematical models
that can describe the underlying patterns, focusing specifically on Gaussian random fields
(GRFs). These models provide robust mathematical theory, and we will employ them to
explain the peculiar π observation we started out with. We will conclude with briefly dis-
cussing how this relates to the broader notion of using cross-disciplinary tools for tackling
tough problems.

1.1 Acknowledgements

Thanks to Professor Dami Lee for not only being open to accepting interdisciplinary paper
topics but also the support and encouragement over the last three quarters. While I was
admittedly on the fence about completing the entire series, I am confident it is a decision
I will not regret. Finally, thanks to Logan for his generous support both in office hours
and over Discord. Logan was truly the best teaching assistant I had at UW and deserves
recognition for his dedication to helping his students succeed.

1.2 A very brief primer on neuroscience

This paper assumes the reader is not familiar with any specific details of neuroscience.
The neocortex is a core component of biological intelligence as we know it. The neocortex
is unique to mammals, and the human neocortex is roughly the size and thickness of a
dinner napkin; it is folded and tightly packed in the outer layers of our brains to increase
surface area (Neuroscience. 2nd edition., 2001). A neuron is the atomic functional processing
unit of the brain. Their primary purpose is to receive input from other neurons, and deter-
mine whether or not to fire an action potential spike which can be picked up by yet more
neurons connected to the first (Neuroscience. 2nd edition., 2001). A typical cortical neuron
can form tens of thousands of synapses (connections) with other neurons, both proximal
(nearby) and distal (far away), resulting in a highly interconnected structure (Gerstner,
Kistler, Naud, & Paninski, 2014).

Moreover, the cortex is arranged in a columnar fashion, with “columns” of neurons
perpendicular to the cortical surface exhibiting similar response properties. The cortex is
composed of several layers and these columns vertically span all layers (Neuroscience. 2nd
edition., 2001). Thus, we can say that information is roughly processed in a 2D array of
individual functional modules, composed of a cluster of neurons connected not only with
other neurons in the column, but also making longer-range connections (Kaschube, Schn-
abel, & Wolf, 2008). The visual part of the brain is called the visual cortex. The primary
visual cortex (V1) is the first part of the cortex that processes visual input from electro-
chemical signals from the eye.
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1.3 Orientation maps

This paper focuses on response properties of columns within the primary visual cortex.
Specifically, orientation columns in V1 consist of neurons that respond to bars of light
oriented at roughly the same angle (Mountcastle, Davies, & Berman, 1957). Experiments
recording from neurons in V1 can determine a particular neuron’s orientation preference
based on the number of spikes it produces, resulting in interestingly organized geometric
patterns (Figure 1).1

Mathematically, let V ⊆ R2 denote the cortical surface, and let rθ(x, y) denote the
experimentally-measured cortical response from a particular cortical area (x, y) ∈ V when
the animal is presented with a stimulus of angle θ ∈ [0, π].2 Suppose in the experiment the
angles θ1, θ2, . . . , θK are used. We can then form a mapping f : V → C from the cortical
surface to complex numbers:

f(x, y) =

K∑
n=1

ei·2θn · rθk(x, y). (1)

Note that this mapping not only encodes the overall orientation preference of an area (as
the dominant orientation will exhibit the largest response r) but its complex modulus (es-
sentially magnitude) encodes the degree of selectiveness (where regions selective to only
a particular orientation have higher moduli). Also note that we are doubling θn because
we want the angle to span the entire circle [0, 2π] and not just [0, π]. Hence, the pattern of
orientation preferences is denoted:

θ(x, y) =
1

2
Arg (f(x, y)) , (2)

where arg denotes the principal complex argument (i.e., angle), such that θ : V → [0, π].

1These geometric patterns are not observed in all species of mammals; notably they are absent in rodents
(Afgoustidis, 2015). Though evidence also indicates they developed in parallel species whose common an-
cestor likely did not exhibit geometric orientation maps, indicating some evolutionary benefits (Afgoustidis,
2015).

2In practice, a response measure such as frequency of spikes may be used. Also note that “cortical area”
is used because some electrical recording methods are based on local activity, which is a reasonable proxy for
individual activity since neurons within a column exhibit similar response patterns.
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Figure 1: (Adapted from Bosking et al. (1997).) (A) Orientation map from tree shrew pro-
duced through optical imaging in visual cortex. Lateral refers to the side and rostral refers
to the anterior (front). (B) Enlarged portions of the orientation map. Left two indicate
pinwheels, middle indicates a linear region, and right shows quasi-periodic pattern.

1.4 Pinwheels and pinwheel density

In Figure 1B above, we can observe points where orientation preferences collide. Essen-
tially, these may be thought of as singular points or points of discontinuities, and are re-
ferred to as pinwheels. Also note the apparent approximate periodic symmetry in the ori-
entation map; we say it exhibits quasi-periodicity. Using this observation, we can denote
these approximately-repeated regions hypercolumns, with spacing Λ (i.e., the distance be-
tween regions that prefer the same orientation, typically in the range of 1 mm (Kaschube
et al., 2008)). This measurement is supported by Figure 1 above.

Pinwheels can come in many types, and one way to characterize them is by the use of
line integrals3 (Wolf & Geisel, 2003). If γj is an arbitrary closed curve around a pinwheel
centered at zj (suppose for simplicity that γj does not intersect any pinwheels so that θ(x)
is continuous for x ∈ γj except at the start and endpoint, where the value of θ makes a
jump discontinuity), then we can denote the topological change around pinwheel i

qi =
1

2π

∮
γj

∇θ(x) · ds, (3)

where ds refers to the arc length and the 1/2π is the normalization factor. Note that θ as
defined in (2) is cyclic, mapping to the real interval [0, π], and also continuous except at
these pinwheels, it follows by the gradient theorem for line integrals that

qi =
1

2π
· nπ =

n

2
, (4)

where n is a integer. (This simplification is because ∇θ is continuous on γj and hence we
can apply the multidimensional analog of the fundamental theorem of calculus. While γj
is indeed closed, it has a single discontinuity at the endpoint, and this is where the nπ
difference comes in.)

Geometrically, the sign of qi denotes the direction (clockwise or counterclockwise) in
3Complex analysis, after all, is “a bunch of line integrals over closed curves” -Dami.
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which θ is wrapped around pinwheel i (see the leftmost two figures in Figure 1B). For
example, if our curve γj encircles pinwheel i counterclockwise, then qi being positive
suggests the orientation preference also increases counterclockwise (as in the bottom left
square in Figure 1B). The magnitude of qi denotes the number of complete wrappings exist
around the pinwheel. For example, if qi = ±1/2, then each orientation is represented once
in the pinwheel (e.g., the leftmost two figures in Figure 1B). In biology, only pinwheels
with this lowest possible topological change qi = ±1/2 are exhibited, and this organiza-
tion is assumed to be a general feature of orientation maps in the visual cortex (Wolf &
Geisel, 2003).

The measurement relevant to this paper is the concept of pinwheel density, which is
the average number of pinwheels per hypercolumn area Λ2 (Kaschube et al., 2008). In-
terestingly, experimental observations indicate a universal design principle across various
species, where the pinwheel density remains relatively constant, approaching an asymp-
totic value of π. We will investigate this observation by looking at biologically-plausible
theoretical models in the next section.

2 Geometric modeling

As this paper is concerned with the mathematics behind orientation maps, and not nec-
essarily the neuroscientific debate of the conditions under which such maps develop, this
section aims to present a tool that can be used to model such maps. The geometric proper-
ties of orientation maps appear to be closely tied with the horizontal wiring of the visual
cortex (i.e., neuronal connections between microcolumns) Afgoustidis (2015). Moreover,
these theoretical maps appear to exhibit all features of true biological maps (Kaschube et
al., 2008). In this paper, we will think of the cortex as an Euclidean plane and impose sym-
metry restrictions to model V1-like patterns on Euclidean spaces. We will first look at these
symmetries and then discuss a statistical modeling tool that abides by such symmetries.

2.1 Symmetries in orientation maps

Following from the quasi-periodic nature exhibited in natural orientation maps, we notice
two symmetries. First, there appears to be a translation symmetry:

f(x + u) = f(x), (5)

where x = (x, y) and u ∈ R2 is some vector describing the translational symmetry. Second,
there appears to be a rotation symmetry:

f(Rx) = f(x), Rθ =

[
cos θ − sin θ
sin θ cos θ

]
(6)

where θ ∈ [0, 2π] is some angle describing the rotational symmetry and Rθ is the corre-
sponding 2 × 2 rotation matrix. These two symmetries are described by the Euclidean
group SE(2), “which is the set of transformations of the plane that preserve Euclidean
distance and the orientedness of bases” (Afgoustidis, 2015).

Biologically, these symmetries likely arise due to longer-range horizontal connections
made between cortical columns. It is also important to note that biologically, these sym-
metries are not realized perfectly. There appears to be some sort of inherent randomness
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producing these quasi-periodic maps; this is an important point to consider when we are
making mathematical models.

2.2 Random fields

A random variable is a variable whose value depends on outcomes of random process.
For example, the outcome of the roll of a six-sided die can represent a random variable
X . The outcome of a random variable need not be real or integer valued; it can also be
vector-valued. The expected value of a random variable can be thought of as the mean
observed value over an arbitrarily large number of trials. For the dice roll example, we
can possibly roll the numbers 1 through 6, so the average value over many trials would
be 3.5 (mathematically, E[X] = 3.5). The variance of a random variable X is defined
Var(X) = E[(X − E[X])2]. Intuitively, it represents a measure of how much the outcome
of a random variable deviates from its mean or expected value.

A random field is a collection of random variables {f(x) : x ∈ X}, each mapping
some parameter space4 to a Euclidean space M (e.g., Rn). (Adler & Taylor, 2007). To
give a physical example, a random field on a sphere can be used to model meterological
characteristics of the Earth such as temperature or pressure.

Let z(x) be some random field. We can characterize z by its spatial correlation func-
tions (Wolf & Geisel, 2003):

C(x,y) = E[z(x)f(y)], C∗(x,y) = E[z(x)z(y)]. (7)

An ensemble of random fields can likewise be characterized in terms of its correlation func-
tions defined analogously for more inputs (Schnabel, Kaschube, Löwel, & Wolf, 2007). For
our model, these correlation functions can be constrained by our symmetry requirements
outlined in equations (5) and (6). In other words, we require the random field to be sta-
tistically invarant with respect to translations and rotations, such that these shifts yield equal
probabilities of outcomes.

The requirement of rotational invariance leads to the observation E[z(x)] = 0 (i.e., that
each random variable has zero mean). Moreover, the combination of translational and
rotational invariance means that the correlation function only depends on the distance
r = ‖x− y‖; i.e.,

C(x,y) = C(‖x− y‖) = C(r). (8)

One of the many models that satisfies this requirement is a Gaussian random field.

2.3 Gaussian random field

A random variable X is said to be Gaussian (or normally distributed) if it has the proba-
bility density function

φ(x) =
1√
2πσ

e−(x−µ)
2/2σ2

, x ∈ R (9)

for some mean value µ and variance σ2 (with σ > 0). Note that (9) is symmetric about
x = µ, so E[X] = µ. Likewise, elementary calculus by applying the integral definition
of expected value yields Var(x) = σ2. One important observation about Gaussians is
that they are completely determined by their mean µ and variance σ2. We can generalize

4This parameter space need not be real or integer valued; it may instead take multidimensional values.
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this definition yielding multivariate Gaussian random variables taking values in higher
dimensional space. A Gaussian random field (GRF) is a random field where each distri-
bution is a multivariate Gaussian.

Gaussian random fields can be expressed by the quantities

E[z(x)], E[z(x)], E[z(x)z(y)], E[z(x)z(y)]

which completely describe how they operate (Schnabel et al., 2007). Our model must be
constrained by translational invariance, so we must have

E[z(x)] = E[z(0)] (10)

and as hinted in (8) the two-point correlation functions depend only on the distance r =
y − x. Thus define

C1(r) = E[z(x)z(x + r)], (11)
C2(r) = E[z(x)z(x + r)]. (12)

Observe that

C1(r) = E[z(x)z(x + r)] (Definition)
= E[z(−x)z(−x + r)] (Inversion symmetry)
= E[z(−x− r)z(−x)] (Translation symmetry)
= E[z(x + r)z(x)] (Inversion symmetry)

= C1(r) (Definition)

and hence C1(r) is real-valued.

Figure 2: (From Afgoustidis (2015).) Simulated orientation map using a Gaussian random
field. The colors in the plot represent different values of complex argument of the field out-
put. Column spacing (wavelength) is Λ = 1

3 . Note the similarities to the experimentally-
derived biological orientation map in Figure 1.
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2.4 Central Limit Theorem

It is worth briefly mentioning the Central Limit Theorem (CLT) to further motivate our
Gaussian assumption. The theorem states that given some distribution with mean µ and
variance σ2, taking sufficiently large samples from this distribution will lead to these sam-
ple means being approximately normally distributed. More specifically, the means of a
sample of size n distribute normally with mean µ and variance σ2/n, independent of the
underlying distribution (we only need each sample to be independent and identically dis-
tributed—i.i.d.). One example of this is human heights: plotting the heights of, say, the
University of Washington student population will approximately yield a bell curve.

Why is the Gaussian limiting distribution particularly useful in practice? Biological
systems are complex, and we seek to understand how larger-scale patterns (e.g., orienta-
tion maps) can arise from the aggregation of small-scale processes (e.g., individual neuron
orientation preferences) (Frank, 2009). Assuming individual neurons have some common
underlying distribution, by the CLT the aggregation of many of them can be approximated
by some Gaussian distribution. For reference, there are approximately 140 million neurons
in the adult human primary visual cortex (V1), which further provides grounding for our
CLT application (Leuba & Kraftsik, 2004).

2.5 Pinwheel density in a GRF

Note that the pinwheel centers are precisely the zeros of our random field z(x), as these
can be thought of, in essence, as the points of singularity. Then the number of pinwheels in
an area A is the number N of zeros in that area. This can be expressed as a integral using
the Dirac delta function and the Jacobian of the random field (Wolf & Geisel, 2003)

N =

∫∫
A
δ(z(x)) · |J(z(x))| d2x (13)

where

(14)|J(z(x))|= det

(
∂x1 Re(z(x)) ∂x2 Re(z(x))
∂x1 Im(z(x)) ∂x2 Im(z(x))

)
= ∂x1 Re(z(x))∂x2 Im(z(x))− ∂x2 Re(z(x))∂x1 Im(z(x))

denotes the Jacobian of z(x). Passing the number of zeros to expectation, applying the
linearity property of expectation, we get

E[N ] =

∫∫
A
E [δ(z(x)) · |J(z(x))|] d2x (15)

and it thus follows that
ρ = E [δ(z(x)) · |J(z(x))|] (16)

is the expected density of the pinwheels (Wolf & Geisel, 2003).

We will now evaluate ρ, following the procedure outlined in Wolf and Geisel (2003).
Note that ρ depends only on some location x, along with the value z(x) and the corre-
sponding derivatives ∇z(x) at x. It is then sufficient to know the joint probability density
function p(z(x),∇z(x)). However, since we are assuming z is Gaussian, this joint PDF
must also be Gaussian, so it can be described by the correlation functions composed of the
expected values of all 6 possible ways of multiplying together z(x), z(x),∇z(x) and∇z(x)
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(see Equation (7)). By our symmetry constraints, the only nonzero correlation functions
are

E[z(x)z(x)] = ca,

E[∇z(x)∇z(x)] = cg,

which we will denote as ca and cg, respectively (Wolf & Geisel, 2003). The aforementioned
PDF can then be calculated as follows:

p(z(x),∇z(x)) =
1

π3c2gca
exp

(
−2
∇z(x)∇z(x)

cg

)
exp

(
−z(x)z(x)

ca

)
. (17)

Plugging (17) back into (16) and evaluating the expectation using its integral definition,
we get (Wolf & Geisel, 2003)

(18)
ρ =

1

π3c2gca
·
∫∫∫∫

exp

(
−2
∇z(x)∇z(x)

cg

)
|J(z(x))| d4∇z(x)

·
∫∫

δ(z) exp

(
−z(x)z(x)

ca

)
d2z(x).

Then, converting to spherical coordinates with g ∈ [0,∞), θ ∈ [0, π), and φ1, φ2 ∈ [0, 2π),
we have

d4∇z(x) = g3|cos θ sin θ| dg dθ dφ1 dφ2
as the volume element, so

ρ =
1

π3c2gca

∫ ∞
0

g5 exp

(
−2

g2

cg

)
dg ·

∫ π

0
|cos θ sin θ|2 dθ ·

∫ 2π

0

∫ 2π

0
|cosφ1 sinφ2 − cosφ2 sinφ1| dφ1 dφ2

(19)

=
cg
πca

(20)

where in line (20) the integrals were evaluated using WolframAlpha. The next step in
this calculation of ρ comes from expressing cg and ca as integrals over the power spectral
density, which we will not address in this paper. However, applying this procedure (as in
Wolf and Geisel (2003) and Schnabel et al. (2007)), it follows that ρ can be lower bounded
by

ρ ≥ π

Λ2
(1 + α) ≥ π

Λ2
, (21)

where α is some nonnegative constant derived from the aforementioned power spectral
density. Finally, since Λ2 represents the hypercolumn area (see Section 1.4), it follows that
we can lower bound the expected number of pinwheels per hypercolumn area by π.

The error for this bound comes from random deviations in the distribution. Interest-
ingly, for many species the approximate mean pinwheel density is equal to this bound. For
example, experimental values include 3.12 in tree shrew, 3.15 in galago (bush baby), and
3.15 in ferret (Kaschube et al., 2010).
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3 Conclusion

In this paper we have explored mathematical theory behind the modeling of orientation
columns in the mammalian visual cortex. Importantly, these theoretically predicted maps
(see Figure 2) exhibit all the essential geometric features of biological maps (see Figure 1).
We have seen how the use of complex numbers can aid in the modeling of these maps, and
how their quasi-periodicity, represented by rotational and translational symmetry con-
straints, appears to be the driving force behind their beautiful geometric nature. These
constraints can be realized in mathematical models; specifically we have seen how the
Gaussian random field model naturally yields to theoretical predictions. The mathemati-
cal theory behind this model can provide explanations for biologically observed features,
such as the density of the pinwheels.

According to Gabriel Silva from the University of California at San Diego,

There is a large intellectual void in our theoretical understanding of many as-
pects about how the brain works and how it processes information despite ever
accumulating volumes of experimental data. A new approach for dealing with
such data is needed (Silva, 2011).

While this may be a niche problem that arguably may not fundamentally advance our
understanding of the brain, it is hopefully an example of an interdisciplinary approach
to solving a problem. Neuroscience is a field with a lot of data and not a lot of theory
to explain these data, and using developed tools from fields like mathematics can have a
fundamental impact on our ability to understand the brain.
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