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1 Introduction

Understanding the brain is arguably the greatest scientific problem of our time. The neo-
cortex is the part of the mammilian brain responsible for higher-order brain functions such
as learning, sensory perception, sophisticated motor control, decision-making, planning,
and language (Neuroscience. 2nd edition., 2001). Experimental neuroscience evidence sug-
gests sparse neuronal activity is used to represent information in the neocortex (Barth &
Poulet, 2012). In this paper we will review recent theories and models for sparse represen-
tations in the neocortex. We will focus primarily on work published by Numenta1 that is
heavily influenced by recent experimental findings in NMDA spiking and dendritic pro-
cessing in pyramidal cortical neurons (Ahmad & Hawkins, 2016; Augusto & Gambino,
2019). We will see how “active dendrites”, referring to the dynamic abilities of neurons
to grow synapses, is a key ingredient in pattern recognition. We will also cover some of
the mathematical theory behind sparse representations, and see how sparsity necessarily
yields high accuracy even in the presence of noise, which is a key feature of biological in-
telligence. We will then look at how this theory of sparsity can be applied to neural models
and briefly discuss how these models can be used to learning a continuous stream of in-
put data. Finally, we will conclude with discussions on the results of reviewed papers,
potential downsides of this model, and possible directions for future work.

2 Background and Related Work

2.1 The Neocortex, Neurons, and Networks

The neocortex is a core component of biological intelligence as we know it. The neocortex
is unique to mammals, and the human neocortex is roughly the size and thickness of a
dinner napkin and is folded and tightly packed in the outer layers of our brains to increase
surface area. The neocortex is not to be confused with the cerebral cortex, which is the part
of the brain that encompasses the neocortex. The cerebral cortex consists of roughy 10%
of the evolutionarily-older allocortex, and 90% of the more recently-evolved neocortex
(Neuroscience. 2nd edition., 2001). In humans the cerebral cortex consists of roughly 16
billion neurons (compared to the roughly 86 billion in the entire human brain) (Herculano-
Houzel, 2009). Exact estimates of number of neurons vary, but the neocortex is widely
regarded as the center for higher-order cognition and intelligence.

1Numenta is a neuroscience research institute in Redwood City, CA, specializing in theoretical neuroscience
and interested in applying neuroscience principles to machine intelligence.
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A neuron is the basic functional unit of the brain. A typical neuron consists of three dis-
tinct parts: dendrites, a cell body (soma), and an axon. Dendrites branch out extensively
(usually to neurons close by, but occasionally to different parts of the brain or nervous
system) and receive inputs from other cells (Neuroscience. 2nd edition., 2001). A synapse
is formed when a dendrite (or occasionally the cell body) of one neuron connects to the
axon of another. A typical cortical neuron can form tens of thousands of synapses with
other neurons, resulting in a highly interconnected structure (Gerstner, Kistler, Naud, &
Paninski, 2014). The cell body functions as the information processing unit of the cell. Im-
portantly, signals received at the dendrites travel to the cell body where they can affect the
membrane potential of a neuron. This refers to the difference of electrical charge inside and
outside of the neuron. If the membrane potential exceeds some threshold, an output sig-
nal (referred to as an action potential/spike) is generated (Gerstner et al., 2014). The action
potential travels down the axon and, at synapses, chemicals called neurotransmitters are
released across the synapse and are received by protein channels in the receiving neuron.
Neurons can strengthen a particular synapse by adding more protein channels at the site
of the synapse.

It is worth mentioning that this is a highly superficial and far from comprehensive
summary of neuronal dynamics. There are numerous other biochemical processes that
are at play inside neurons but the above information is sufficient for the purposes of this
paper.

Let us return to the notion that dendrites can effect the membrane potential when input
spikes are received. When neurotransmitters are passed along a synapse and taken in at a
receiving neuron’s dendrites, they can change the local voltage at that location (Gerstner
et al., 2014). Inhibitory synapses can decrease the potential, whereas excitatory synapses
can increase the potential. In their theories, Numenta uses the standard neuroscientific
division of the dendritic tree into three parts: the proximal zone, the basal zone, and the
apical zone which serve the following purposes (Hawkins & Ahmad, 2016). (See Figure 1
below for a diagram of a typical pyramidal neuron.)
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Figure 1: Drawing of pyramidal neurons by Santiago Ramón y Cajal in the late 19th cen-
tury. Cajal was a pioneer of the field of neuroscience, and his insight that neurons are the
discrete unit of computation and that communication between neurons occurs through
synapses became known as the neuron doctrine. The cell body is the black blob, the axon
is the thin small line extending from the bottom of the cell body (labeled “a”), the proximal
dendrites are the branches close to the soma, the basal dendrites are slightly further away
from the proximal dendrites, and the apical dendrites extend from the top of the cell body
and branch out extensively.

Proximal dendrites have the largest effect at the soma and synaptic activity here is
more prone to causing a action potential (Hawkins & Ahmad, 2016). Hence, we can think
of proximal synapses as defining the feedforward receptive field of the cell. More specif-
ically, since there are many dendritic segments close to the cell body, the feedforward re-
ceptive field can be thought of as a union of feedforward patterns (Hawkins & Ahmad,
2016).

Basal dendrites are farther away from the cell body on the dendritic tree when com-
pared to proximal dendrites. Basal dendrites primarily receive feedforward input from
nearby neurons (Park et al., 2019). If a local basal dendritic segment receives enough ex-
citatory synaptic activity, it can cause a dendritic spike to travel down to the cell body
(Augusto & Gambino, 2019). (Experimental evidence indicates the coincident activation of
8-20 local synapses is sufficient for generating a dendritic spike (Major, Larkum, & Schiller,
2013).) Also referred to as NMDA spikes, a single one of these pulses is often not enough
to lift a cell above its firing threshold, but is still enough to have a longer-lasting despo-
larization of the cell body (Augusto & Gambino, 2019). Numenta proposes that this de-
polarization represents a state of prediction that the cell will become active (Hawkins &
Ahmad, 2016). What does this have to do with prediction? A slightly depolarized cell will
fire slightly earlier than it otherwise would if it receives sufficient feedforward input. By
firing earlier, nearby neurons are inhibited which yields sparse patterns of activity when
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predictions are correct (Hawkins & Ahmad, 2016).2

Apical dendrites are the most distal (i.e., farthest away from the cell body), and receive
both synaptic input from nearby neurons and more “global” connections with neurons
farther away (Park et al., 2019). Typically a single apical dendrite extends from the cell
body for several hundred microns before branching out and forming a dendritic tree (this
we refer to as the “apical dendrites”). Apical dendrites can also generate NMDA spikes
that lead to a temporarily depolarized soma (Augusto & Gambino, 2019). Hence, apical
dendrites also recognize patterns and make predictions similar to basal dendrites, but since
apical dendrites are connected to neurons farther away, Numenta refers to this prediction
as “top-down expectation” (Hawkins & Ahmad, 2016).

2.2 Neuroscientific applications to machine intelligence research

Understanding how the neocortex functions could provide us with useful insights and
primitives we can apply to machine intelligence problems. The fields of artificial intelli-
gence and machine learning have been heavily influenced by neuroscience. For example,
artificial neural networks used in deep learning models were inspired by the interconnec-
tivity of networks of neurons in the brain (Gerstner et al., 2014). A more recent example
is the concept of attention which is also derived from neuroscientific findings (Vaswani et
al., 2017).

However, most artificial neural networks use highly simplified artificial neurons when
compared with their biological counterparts. For example, artificial neurons in deep neu-
ral networks sum together their inputs and pass them through a nonlinearity. However, as
summarized above, biological neurons have much more complicated temporal dynamics.
Moreover, dendrites don’t simply integrate their inputs, as indicated by the complicated
spatiotemporal properties of dendritic segments. Another example is fully-connected lay-
ers in artificial neural networks. Most cortical pyramidal neurons form on the order of
ten thousand synapses with other cells and can dynamically grow or remove synapses
with Hebbian learning rules (Neuroscience. 2nd edition., 2001). However, fully-connected
layers assume that neurons are connected to every neuron in the previous layer, which is
not biologically plausible. While these simplifying assumptions work for some specific
applications, they do not lend to the incredible generalization properties of the brain. To
understand why neurons need active dendrites, Numenta proposes a theory that relies
heavily on another neuroscientific principle: sparsity (Hawkins & Ahmad, 2016).

2.3 Sparsity

In the neocortex, sparsity is ubiquitous, found in nearly every subregion of cortex and
across all sensory modalities (Barth & Poulet, 2012). (One speculative evolutionary expla-
nation for sparsity relates to power consumption. Neuronal firing is an “expensive” action
as we shall see. Evidence suggests that in humans, the brain consumes 20% of the body’s
energy, so assuming a 2000 calorie daily diet, this equates to roughly 20 watts power con-
sumption (Herculano-Houzel, 2009).) Hence, sparse representations of information appear
to be deeply ingrained in biological intelligence, and we cannot truly understand brain
function without understanding sparsity.

2This inter-column inhibition is explained more in the brief article “Quiet Down Now: How Excitatory
Neurons Inhibit One Another” (Robinson, 2010).
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Sparsity in the brain refers to only a small percentage of neurons being active at any
given time, and cells are only physically connected to a relatively small number of cells
(Neuroscience. 2nd edition., 2001). On the other hand, sparsity of weights in computational
models (e.g., as imposed by L1 regularization) simply zero out weights for particular fea-
tures. However, the brain does not zero out feature weights. Instead, it finds representa-
tions for features using only a small subset of neurons; which neurons are active depends
on the input, and can change over time (e.g. through learning).

2.4 Sequence learning

What properties of the brain are so fundamental and necessary for prediction, motor plan-
ning, language, and other high-order cognition? Numenta argues that “the most funda-
mental operation of all neocortical tissue is learning and recalling sequences of patterns”
(Hawkins & Ahmad, 2016). Taking inspiration from how brains process information, they
note several properties of sequence memory:

1. Online learning: Learning must be continuous (compared to the traditional train-
inference phase of most models today).

2. Higher-order3 predictions: Correctly predicting complex sequences requires incor-
porating past contextual information. For example, when you are reading this paper,
you likely remember some key information from the first few sections even though
you’ve read other sections in-between.

3. Multiple simultaneous predictions: While this may seem counterintuitive, brains
continually (and oftentimes subconsciously) make multiple simultaneous predic-
tions. For example, if we hear leaves rustle while taking a hike in the woods, we si-
multaneously predict that it could be wind, another hiker, or a mountain lion among
other possibilities! Therefore our model of sequence memory needs to also have this
ability of making multiple simultaneous predictions.

4. Local learning rules: Instead of having a global objective function (like most mod-
els today use), the learning rules for our sequence memory must be local4 to each
individual neuron.

5. Robustness: Brains are incredibly robust to noise, variance in inputs, and neuronal
failure. For example, if you saw a pixelated or blurry image of a dog you’ve never
seen before, you would instantly be able to recognize a dog. Hence our sequence
memory should exhibit similar robustness properties.

We will return to these properties when we discuss models of neurons in section 5.1.

3 Mathematical Foundations of Sparse Representations

In Ahmad and Hawkins (2016), Numenta examines some interesting properties of Sparse
Distributed Sepresentations (SDRs), which are the primary representation method used in
their Hierarchical Temporal Memory (HTM) systems. As alluded to before, representa-
tions are sparse because only a small percentage of neurons are active at any given time,

3The term “higher-order” refers to higher-order Markov chains which have the property of holding infor-
mation for many time steps.

4Local in both space and time.
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and distributed because information is encoded across a set of active neurons and not just
a single neuron. Here we review some of the most important properties of SDRs given in
Ahmad and Hawkins (2016) before seeing how they can be applied to machine intelligence
systems.

SDRs. We make the simplifying assumption that if we take a small enough time bin,
e.g. milliseconds, we can observe sets of neurons that are active in each bin. Thus, we
can represent the instantaneous activity of a population of n neurons by a binary vector
x ∈ {0, 1}n where a xi = 1 if an only if neuron i is active. These binary vectors are highly
sparse (i.e., a small number of components are 1). We use |x| to denote the number of
“on” (1) bits in x (i.e., |x| =

∑n
i=1 xi = ‖x‖1). When we refer to many SDRs with the same

number of on bits we will use the variable w to refer to the number of on bits.

Overlap and matching. The overlap between two SDR vectors is the number of bits
that are in the on (1) state in the same location. Since these are binary vectors as explained
above, we can compute the overlap between two SDRs simply by taking the dot product
(x · y). For an example5, consider the following where n = 16 and w = 4:

x = 0010001000110000

y = 0001001000100001

overlap(x, y) = x · y = 2

since there are two places where x and y both have a 1. We say two SDR vectors have a
match if their overlap exceeds some threshold θ. That is, there is a match between x and y
if x · y ≥ θ.

SDR representation space. Given a fixed n and w, the number of unique SDR encod-
ings is n choose w: (

n

w

)
=

n!

w! (n− w)!
(1)

since we can choose w places in the n-dimensional vector to place a one. Note that this
is much smaller than the number of possible recordings when we don’t enforce sparsity,
which is 2n since at every position we can place either a zero or a one. However, with
values of n = 2048 and w = 40 the number of possible SDR encodings is 2.37 × 1084, still
an astronomically large number. The inverse of (1) is the probability that two SDRs chosen
uniformly at random are equal, which is essentially zero for any reasonable choice of n
and w.

Inexact SDR matching. We now observe how many SDRs of size n have exactly b bits
of overlap with some SDR x with |x| on-bits. Assuming b ≤ |x| and b ≤ w, this number
can be expressed as

overlapsizex(n,w, b) =

(
|x|
b

)
×
(
n− |x|
w − b

)
(2)

where the first term indicates the number of ways to choose b overlapping bits and the
second term indicates the number of ways to choose the remaining w − b on-bits in the
places of x that have a zero. Keeping this fact in mind, we turn to how we can make our
matching system more tolerant to noise. Clearly, exact matching (i.e., θ = w) is infeasable
since only one slight perturbance will cause our system to not recognize the match. More-
over, every sensory experience your brain has ever was novel since sensory inputs never
repeat exactly; exact matching is clearly not how the brain solves this problem. If, for ex-

5This is a highly trivial example and in reality n is much larger.
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ample, we set θ = w/2, random noise can change 50% of the on-bits and still match two
SDRs. However, there is a tradeoff between robustness to noise and generating more false
positives (i.e., a match when there shouldn’t be one). Formally, given a SDR encoding x
and another random SDR y, the probability of a false match (i.e., x · y ≥ θ can be expressed

FPw(n,w, θ) =

∑w
b=θ overlapsizex(n,w, b)(

n
w

) (3)

where the numerator indicates the total number of SDRs that match at least θ bits with w
and the denominator indicates the number of total patterns from (1). This probability is
very low; see Figure 2 below for a visual.

Figure 2: False positive probabilities for SDRs corresponding to equation (3). The SDR
size n is on the x-axis and the false positive rate is on the y-axis. Each solid black curve
corresponds to a different number of on bitsw. As the SDR size increases, the false positive
probability becomes essentially zero. The dashed black line at the top indicates the false
positive probability of SDRs when w = n/2 (i.e., half the bits are 1). In thse case, the error
rate is around 50% which implies sparsity is a necessary component for robustness with
SDRs. Figure from Hawkins et al. (2016).

4 Sparse representations in single neurons

Now that we have sufficient background on SDRs, we turn to the question of how biolog-
ical neurons operate on such representations. We will primarily cover information in Ah-
mad and Hawkins (2016) while also discussing some relevant information from Hawkins
and Ahmad (2016). Note that in this section, we will focus on static analysis (i.e., no learn-
ing) and specifically the theory behind active dendrites.
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4.1 Methods

First, one important aspect of this model is that the instantaneous activity of presynaptic
cells is either on (1) or off (0); this enables simpler mathematical analysis that is in-line
with the background on SDRs we covered above. The proposed model treats a neuron as
having a set of independent dendritic segments (Hawkins & Ahmad, 2016). Each segment
receives some input and decides whether or not to fire a dendritic spike depending on
whether it recognized some learned pattern. Each dendritic segment of a neuron has a
certain region of potential connections that could be made with other cells; this region is a
subset of all possible connections. The number of actual connections the segment makes is
a small percentage of the number of possible connections in the aforementioned region.

Mathematically, let n represent the number of possible connections a dendritic segment
could make. We can thus represent a dendritic segment with a binary vector d ∈ {0, 1}n,
where di = 1 indicates the segment is connected to presynaptic cell i in the region, and
the sum of elements in d indicates the number of connections the synapse has made (i.e.,
|d|). Experimental neuroscience findings indicate the number of dendritic segment con-
nections on typical cortical pyramidal neurons is between 20 and 300, whereas the number
of possible connections n is taken to be much larger (Major et al., 2013). Likewise we can
represent the presynaptic activity at time t in the region of possible connections with the
binary vector at ∈ {0, 1}n. Let |at| denote the number of active cells. As discussed above a
dendritic spike fires when the match between at and d exceeds some threshold θ.

4.2 Results

Other typical computational models assume full connectivitiy between a cell and its set
of possible inputs (e.g. “fully connected” layers in artificial neural networks, where every
neuron in one layer is connected to every neuron in the next layer). However, the theory
discussed here assumes very sparse connectivity. How, then, can we assume our model
dendritic segment can reliably detect a pattern when it is not connected to very many
cells?

Recall the tradeoff between robustness to noise (i.e., a dendritic segment can still detect
patterns even with noisy neuronal firing) and generating false positives (i.e., a segment de-
tects a pattern when there is none). Note that a high overlap threshold θ makes a segment
less robust to noise but more confident in its predictions, and vice-versa. By equation (3),
the probability that any random presynaptic activity pattern generates a match is simply
the probability of a false positive:

P (aTt d ≥ θ) =
∑|d|

b=θ overlapsized(n, |at|, b)(
n
|at|
) (4)

While this equation appears quite messy, note the denominator increases much more than
the numerator. Hence, by increasing n and |d| we can make the probability of a false
positive very small (refer to Figure 2 for false positive rates). Likewise, the probability of a
false negative can be decreased in a similar fashion.

We now take a step back and look at populations of dendritic segments. Suppose a
neuron hasm independent dendritic segments that representm patterns (assume that each
segment detects a single pattern), and each segment has |d| synaptic connections and a
matching threshold of θ. A false positive occurs when any of the segments falsely detect
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a different pattern. Let di ∈ {0, 1}n denote the ith dendritic segment connections, for
1 ≤ i ≤ m. Then given some presynaptic input a ∈ {0, 1}n representing a new pattern, we
have

P (a matched) = 1− P (a not matched) = 1−
m∏
i=1

P (aTdi < θ)

and for high-dimensional sparse vectors this probability is very small.

Thus, we have shown that robust recognition of patterns is possible if presynaptic ac-
tivity is sparse. Intuitively, if the number of active neurons at any time is much smaller
than the population size (i.e., sparse activity), and a dendritic region is connected to a
small number of neurons that happen to be some of the active ones, then the chances are
quite high that these neurons represent a specific pattern. The mathematical analysis above
shows that pattern recognition can be almost perfect even with a large amount of noise and
sparse synaptic connections.

5 Sparse representations in networks of neurons

Now that we understand how a single neuron can operate using sparse representations,
we turn to the following questions:

• How can we represent the salient properties of neurons (discussed above) in a com-
putational model?

• How can networks of these model neurons learn sequences of patterns?

Potential answers for these questions correspond to work done in Hawkins and Ahmad
(2016).

5.1 Methods

Numenta refers to their model neuron as a “HTM neuron” where HTM is Hierarchical
Temporal Memory, a term used to describe their models of neocortex (Hawkins & Ahmad,
2016). HTM neurons are modeled essentially identical to the dendritic properties discussed
above: HTM neurons have a set of dendritic segments (referred to as “coincidence detec-
tors”), each with their own synapses, and they are in three groups corresponding to the
proximal, basal, and apical dendrites of a cortical pyramidal cell (Hawkins & Ahmad,
2016). In this paper, HTM neurons have 128 coincidence detectors with up to 40 synaptic
connections on each dendritic segment. See Figure 3 below for a comparison of (A) typical
artificial neurons, (B) biological pyramidal neurons, and (C) HTM neurons.
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Figure 3: Comparison of different neuron models (Hawkins & Ahmad, 2016). (A) is the
typical model used in most ANNs. (B) is a diagram of a typical neocortical pyramidal
neuron. Proximal dendrites are highlighted in green and receive feedforward input that
can lead directly to (somatic) action potential. The distal dendrites receive contextual in-
put and apical dendrites receive feedback; both these can trigger NMDA spikes and help
depolarize the cell if enough spatially-close synapses are activated together. (C) is the
computational model of (B), referred to as an HTM neuron.

Recall the properties of sequence memory as listed in section 2.4. We will now cover
the basics of using HTM neurons to model sequence learning. (For a more in-depth review
refer to (Hawkins & Ahmad, 2016).)

Higher-order sequence memory requires both a representation of the input to the net-
work at a certain time step, and an input for the temporal context. For example, when
reading this paragraph, your brain receives visual input from the words on as you read,
but there is also an internal representation of the previous sentences and paragraphs en-
abling you to build on concepts. Figure 4 below, from (Hawkins & Ahmad, 2016), and
its caption illustrate basic example, and provide information how cells in mini-columns6

learn high-order sequences.

6Without going into too much depth, the cortex is typically divided into 6 layers, and mini-columns span
all layers (Neuroscience. 2nd edition., 2001). All the neurons in a mini-column (on the order of 100) share the
same feedforward receptive field properties (Hawkins & Ahmad, 2016).
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Figure 4: Consider the sequences ABCD and XBCY. In order to correctly predict the fourth
letter after receiving the first three, our sequence learning system must have different rep-
resentations of BC. In (b), all cells in a column become active prior to learning. In (c), only
particular cells in columns are active after learning. This essentially serves to encode the
past information; for example the B’ encoding indicates A was active before and the B’’
encoding indicates X was active before. (Panels greatly simplified for clarity.) Figure from
Hawkins and Ahmad (2016).

Note how the minicolumn activity exhibited in Figure 4 makes sense from a theoretical
perspective. All cells in a minicolumn share the same feedforward properties, so if an input
is novel (i.e., hasn’t been learned), all cells will become active. However, in the context of
a learned sequence of inputs, one or more of the cells in a minicolumn will be depolarized
as a result of prediction from the previous input.7 Hence, the depolarized cells will reach
threshold first, thus generating an action potential before other cells and inhibiting nearby
cells. This leads to sparse patterns of activity that are unique to a particular element of a
particular sequence (Hawkins & Ahmad, 2016).8

Now we turn to the synaptic learning rule. For a model neuron to recognize a certain
pattern of activity, a set of synapses in a dendritic segment need to connect to a subset
of cells that are active when the pattern is recognized (Hawkins & Ahmad, 2016). Hence
our model neuron needs to have the ability to “grow” new synapses. This is achieved by
maintaining a set of potential synapses in each dendritic segment, where each synapse has
a “permanence” value representing the stage of growth of a synapse between the dendritic
segment and some other neuron (0 represents no growth and 1 represents a fully-formed
synapse) (Hawkins & Ahmad, 2016). The permanence value is altered dynamically using
a Hebbian-like learning rule, where increased used leads to stronger permanence and per-
manence decays over time. Moreover, the model treats all synapses with a permanence
exceeding some threshold (e.g., 0.3) as having the same weight, and all others as not being

7Specifically, the basal synapses learn the transitions between patterns of inputs, whereas the proximal
synapses receive the input to the network. Since the basal synapses are essentially a step ahead of the network,
predicting the next input from the current input, they are more depolarized than the inactive cells, so upon
more feedforward input at the next time step, the cells with basal input reach action potential threshold first.

8Perhaps referring to this network as modeling “sequence memory” is not the best term since there is no
representation of dynamic-length “sequences.” Instead, this network learns transitions between inputs. The
nuances of various sequences are encoded in the sparse neuron activity at each time step.
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formed at all. This enables for binary-based computation but the permanence is still used
internally to model how repeated patterns result in strengthened synapses, and one-time
patterns are typically caused by noise.

5.2 HTM vs. other temporal models

Both these models are good at representing information across many time steps, and hence
both are good at learning sequences. However, there are also several differences. First,
HTM neurons involve more complicated processing of inputs (e.g., dendritic segments
as discussed above). Second, HTM models do not train using backpropagation (as used
by RNNs); instead, they use a more simple Hebbian-style learning rule. This essentially
combines the train/inference phases of typical RNNs and other DL models and reduces
computational cost. Third, HTMs are based around sparse neuron activations and sparse
neuron connectivity, whereas typical RNNs or other models involve neurons that aren’t
sparsely activated and don’t have sparse connectivity. Finally, HTMs are based on binary
representations whereas most other models involve real-valued representations. These
properties enable HTM neurons to excel at modeling continual data streams with minimal
computational cost. The sparsity properties also enable impressive noise robustness and
fault tolerance properties. Finally, there is minimal hyperparameter tuning whereas typical
RNN models require tuning of many hyperparameters.

5.3 Results

In Hawkins and Ahmad (2016), a network of HTM neurons (with 2048 minicolumns, each
containing 32 HTM neurons) was used to model synthetic data containing high-order se-
quences in addition to random noise (where the maximum possible average prediction
accuracy is 50%). Each HTM neuron had 128 basal dendritic segments, each segment with
up to 40 synapses.9 Figure 5 below shows the accuracy of the network.

Figure 5: Simulation results of HTM network from (Hawkins & Ahmad, 2016). (A) online
learning starting from scratch. After 3000 samples the sequences in the data stream were
changed so the model has to recover and learn the new sequences. The blue line represents
the performance of a first-order model. (B) After about 3500 samples, a random selection
of neurons were inactivated. Note how at 40% cell death the network’s performance is
hardly affected, and even with 75% cell death the network is able to return to previous
accuracy levels after about 2500 more samples.

9No apical synapses were included because this network was designed to illustate basic properties of se-
quence memory.
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The embedded sequences in the synthetic stream are six elements long (e.g. XABCDE)
and require high-order representations to fully disambiguate the patterns and achieve the
maximal accuracy of 50%.

6 Conclusion

In this paper, we have seen how sparsity in the brain enables it to generalize more broadly
and detect patterns even with significant amounts of noise. We can use the theory of SDRs
to design robust sequence learning algorithms, such as the HTM model neuron discussed
in this paper, that have similar sparsity and noise-robustness properties as the brain. Re-
sults of basic experiments with HTM neurons (i.e., those discussed in section 5.3) indicate
significant ability to generalize and rapidly adapt to novel patterns. However, the accuracy
comparison in Figure 5 only compares the HTM network to a “first-order model” (which
was just another HTM network with only one cell per column) (Hawkins & Ahmad, 2016).
It would be interesting to make additional comparisons to other popular models capable
of learning high-order sequences (such as RNNs and hidden Markov models) to gain a
better understanding of how HTM networks compare in practice.

One limitation of these models is that they are naturally suited to continuous stream-
ing data. However, sparsity is a high-level concept that can be applied universally, so
another interesting line of work would be to apply it to typical deep neural network mod-
els. Dropout, for example, can encourage more sparse models by “killing” a percentage
of the neurons and is an effective tool for regularization (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014). However, dropout is added on top of traditional dense
layers as an augmentation to a typical dense network, so it would be interesting to take
a different approach and incorporate sparseness into the layers themselves. Numenta
has research into building sparse CNNs, for example, and it would be interesting to fur-
ther explore this work and apply it to novel problems other than just MNIST (Ahmad &
Scheinkman, 2019).

As for this paper, the mathematical analysis of sparsity assumes neural activity is (1)
sampled from uniform random distributions, and (2) decorrelated. For the former, clearly
the sensory inputs our brain receives is not sample uniformly at random. For example
there are patterns of sensory inputs brains process frequently, and other patterns brains
never process. Hence extending this analysis to other distributions of neural activity is
an interesting topic for future work. For the latter, the topic of neural correlation and
distributions of individual spiking neurons in cortex is debated, but due to the inherent
robustness of sparse reprsentations, neural activity that is not completely uncorrelated
still yields high fault tolerance (Ahmad & Hawkins, 2016).

Additionally, our assumptions of binary synapses is also up for debate. However, if
for example we were to change synapses from a single bit to 3 bits (representing 8 possible
synaptic weights) without changing sparsity, the noise robustness of our system would still
remain the same. This is because robustness relies on the sparse representations. Theoret-
ically, adding more bits of resolution to synapses would only expand the space of possible
representations, and this presents another possible direction for future investigation.

The understanding of active dendrites has not been fully established in neuroscience
literature, but establishing theories for their purpose can enable future hypothesis-driven
experimental work. Nonetheless, sparsity is a core component of neocortical function so
this line of work is a promising start to the future of brain-inspired intelligent algorithms.
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