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1 Introduction

Recent advances in collecting data from live neurons has resulted in massive data sets that
track hundreds or thousands of neurons with millisecond time accuracy. Choosing the
right model when fitting this data is incredibly important in order to accurately analyze
the behavior of cortical neurons.

In section 2, we discuss how neurons function biophysically and provide the back-
ground necessary before applying these facts to building accurate models. In section 3,
we discuss two basic widely-known models with varying degrees of biophysical realness:
the Integrate-and-Fire model, and the Hodgkin-Huxley model and how they differently
model neuronal firing. We also discuss a model designed to be both biophysically accu-
rate and computationally efficient (Izhikevich, 2003). In section 5, we feed these models
with white noise and compare the spike-triggered-averages as well as the voltage output
and analyze how they perform under certain scenarios. Finally, in section 6, we conclude
with discussing biological plausibility and computational efficiency and the circumstances
under which each model performs optimally.

2 Background

A typical neuron consists of three distinct parts: dendrites, a cell body, and an axon. Den-
drites branch out extensively (usually to neurons close by, but occasionally to different
parts of the brain or nervous system) and receive inputs from other cells (Neuroscience.
2nd edition., 2001). A synapse is formed when a dendrite (or occasionally the cell body)
of one neuron connects to the axon of another. A typical cortical neuron can form tens of
thousands of synapses with other neurons, resulting in a highly interconnected structure
(Gerstner, Kistler, Naud, & Paninski, 2014). The cell body functions as the information pro-
cessing unit of the cell. Importantly, signals received at the dendrites travel to the cell body
where they can affect the membrane potential of a neuron. This refers to the difference
of electrical charge inside and outside of the neuron. If the membrane potential exceeds
some threshold, an output signal (action potential/spike) is generated. The neuron gen-
erating this action potential is referred to as the presynaptic neuron. The action potential
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travels down the axon and the signal is passed to postsynaptic neurons, or other neurons
that have formed a synapse with the presynaptic neuron.

Figure 1: Drawing of neurons by Santiago Ramón y Cajal in the late 19th century. Cajal
was a pioneer of the field of neuroscience, and his insight that neurons are the discrete
unit of computation and that communication between neurons happens through synapses
became known as the neuron doctrine. In this drawing, note the dendrites (treelike struc-
tures toward the bottom), the cell body (the thick black part where the dendrites meet),
and the axon (pointing up connecting to other neurons) of each neuron.

One important note is that an action potential is commonly referred to as “all or noth-
ing”. That is, the occurrence of a cell’s spike is what is important, not the shape or duration
of a spike. Moreover, after a spike is generated, the cell enters a short refractory period (on
the order of milliseconds where it is biophysically impossible for the cell to fire another
spike (Neuroscience. 2nd edition., 2001). This absolute refractory period is followed by a rel-
ative refractory period where it is difficult, but not impossible, for the neuron to generate
another spike. We will return to this later after discussing some of the ionic movements in
neurons.

2.1 Movement of Ions in the Neuron

The membrane potential in a neuron is a result of organic molecules in the brain such as
sodium, potassium, calcium, and chloride (Na+, K+, Ca2+, Cl−). At rest, the inside of a
neuron is more negatively charged than the substance outside, with the resting potential
around -65 millivolts (mV) (though it is important to note that this number varies between
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different types/species of neuron). We will return to this value after mentioning how ions
can travel in and out of the cell.

The impermeable lipid bilayer cell membrane in a neuron has proteins that allow ions
to move in and out of the cell. These proteins are called ion channels. There are 2 types
of channels, active channels and passive channels. The passive channels let the ions move
freely into and out of the cell along the concentration gradient, while the active channels
pump ions against the concentration gradient. One common type of active ion channels
(and the one that is most pertinent to computational models of neuronal firing) is voltage-
gated ion channels. These channels are closed when the cell is at resting potential and
open in events where the membrane voltage changes.

Returning to the cell’s resting potential, there are also special sodium-potassium pumps
in the membrane that pump three Na+ out of the cell while pumping two K+ ions into the
cell. This active process results in more positive charge outside of the cell, and thus main-
taining a negative resting membrane potential to prevent the depolarization of the cell due
to passive movement of ions along the concentration gradient. Thus, at resting potential,
there is more Na+ outside the cell, and more K+ inside the cell. We will return to this fact
later.

2.2 Neuronal Communication

As previously mentioned, when a presynaptic neuron’s axon connects with a postsynaptic
neuron’s dendrite, a synapse is formed. The type of synapse relevant to our research (and
the most common type of synapse in our brains) is a chemical synapse (Neuroscience. 2nd
edition., 2001). If two neurons are connected with a chemical synapse, the presynaptic neu-
ron releases neurotransmitter molecules (stored in small sacs called vesicles) which flow
across the synaptic cleft, the gap between the neurons. We will not focus on the various
types of neurotransmitters, but commonly studied ones are acetylcholine and dopamine.
The neurotransmitter molecules then bind to receptor molecules in the postsynaptic cell’s
membrane, opening voltage-gated ion channels and letting ions into the postsynaptic cell.
Synapses can be excitatory or inhibitory. At excitatory synapses, positive ions enter the
cell and result in depolarization, since the membrane potential difference is no longer
large in magnitude. Incoming spikes at these synapses (excitatory postsynaptic poten-
tials; EPSPs) increase the cell’s membrane potential and makes it more likely to fire. At
inhibitory synapses, the opposite is true. Inhibitory postsynaptic potentials (IPSPs) result
in hyperpolarization (an increase in membrane potential; term comes from the fact that
the membrane potential difference is growing large in magnitude) and make it less likely
to fire. IPSPs and EPSPs can cancel each other out thus acting as a biological noise filter.

If the postsynaptic neuron becomes sufficiently depolarized (this threshold is typically
around -55 to -40 mV, though it varies), voltage-gated sodium channels in the cell mem-
brane are opened, and by process of diffusion, an influx of positively charged sodium enter
the neuron. (See above for more info on ion channels.) In Figure 2 below, this corresponds
to the steep increase in voltage (Neuroscience. 2nd edition., 2001). The voltage peaks at
around 40 mV, when the sodium channels close and the voltage-gated potassium channels
open. Since potassium is highly concentrated inside the cell, potassium ions flow down
the concentration gradient (i.e., out of the cell) which drops the cell’s membrane potential.
In Figure 2 below, this corresponds to the steep drop in voltage. Potassium channels take
longer to close than sodium channels, so K+ ions continue to flow out of the neuron result-
ing in hyperpolarization (the slight dip below resting potential in Figure 2). The neuron is
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in a brief refractory period state where it cannot fire. The potassium channels then close
and the previously-mentioned sodium-potassium pumps restore the resting potential. The
Result of this process of depolarization (when sodium rushes in) and repolarization (when
potassium rushes out) is propagated down the length of the axon and triggers the release
of neurotransmitters into other synapses, which can thus cause the spiking of other neu-
rons.

Figure 2: Membrane potential during the firing of an action potential. Figure generated
using Hodgkin-Huxley model (see section 3.2).

It is also important to briefly mention the role of synaptic plasticity. This refers to
the strengthening or weakening of synapses over time. A rough translation of Hebb’s
learning rule is “neurons that fire together wire together” referring to the fact synaptic
strength changes in response to increases or decreases in activity (Citri & Malenka, 2008).
This forms the basis of learning and memory, which are core components of a nervous
system. Much of the details of plasticity are not known, but the concept of plasticity is
pivotal when developing computational models of networks of neurons.

3 Computational Models of Neuronal Firing

As methods of collecting data of neuronal firing continue to improve, the field of com-
putational neuroscience needs computational models to sort out and make sense of that
data. Here we cover basic models used to model spiking neurons and discuss the uses and
drawbacks of each model.

3.1 Integrate and Fire Model

Given all the information we have about neurons, it is essential that we are able to model
said neurons to predict their behavior and uncover their secret ways of conducting actions
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and making decision with the chaos ensued by the firing of all neurons nearby. One of
the earliest models of a neuron is the Integrate and Fire Model (IF model) which was first
developed in 1907 by Louis Lapicque represented the neuron as a derivative of the law of
capacitance (Brunel & van Rossum, 2008). This model relies on 3 key ideas to work. The
first is that action potentials of a given neuron always have roughly the same form. Sec-
ondly, information was not transmitted through the different spike shapes, rather through
the presence and absence of a spike. Finally, spikes can be reduced to ’events’ that happen
at a moment in time. Given those facts, the model consists of 3 main parts:

1) A first-order linear differential equation to describe the evolution of the membrane
potential with time,

τm
du

dt
= −(u(t)− urest) +RI(t) (1)

2) A threshold for spike firing,

3) A voltage reset value for post-spike hyper-polarization.

The differential equation represents the change in the membrane potential as a function
of the input current and time. As the input current increases, the membrane potential
increases up to a threshold. As the membrane potential crosses the threshold a spike is
generated as a delta function (i.e., the voltage instantly spikes up). After the spike reaches
its peak, the membrane potential is reset to a specific value below resting potential to
simulate post-spike hyper-polarization.

While the model might appear to accurately predict the output of a neuron, it can only
accurately predict the first spike, given that the input current is not a shunting current. The
model regards action potentials as events in a time scale, and has no memory of previous
spikes as we reset the membrane potential to a hard-coded value after every spike. The
model also can’t display adaptation for the same reason, unless we employ a filter. A filter
used can be as simple as increasing the spiking threshold value for every spike generated.
We can also add a “leaking” variable to resemble the membrane potential decay.

While the model lacks a lot in accurately modeling a neuron’s biochemistry and bio-
physics, it does a great job in predicting spike firing times of a neuron if we employ all the
aforementioned improvements. The integrate and fire model is great for constructing and
simulating large populations of neurons as it is simple and doesn’t cost much computa-
tionally to run these simulations.

All in all, the model with minor improvements for adaptation, memory and membrane
potential decay is a great model to predict firing times, but alone without any improve-
ments doesn’t serve much use in our current time as we have much better models.

3.2 Hodgkin-Huxley Model

Another well-known model—perhaps the most well-known neuron model—is the Hodgkin-
Huxley model (HH model). The model focuses on the relationship between the currents
passing through the ion channels across the neuron membrane and the membrane poten-
tial (Hodgkin & Huxley, 1990). The model was based on the giant squid axon, and then
later expanded to model cortical cells in vertebrates and then in humans. It focused on
the 3 types of ion channels, Na+ channels that are responsible for the depolarization, K+
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channels that are responsible for the hyper-polarizing of the cell as well as a leak channel
that represents the decay of the voltage, typically through the Cl− ion. The breakthrough
of Hodgkin and Huxley was that they succeeded in measuring how the effective resistance
of a channel changes as a function of voltage and time.

C
dV

dt
= I(t) + gKn

4(V − VK) + gNam
3h(V − VNa)− gl(V − Vl) (2)

Variable definitions:

• C: Capacitance of the membrane

• V : Current Membrane Potential

• dV
dt : Change in membrane potential

• I(t): Time dependent input current

• gK, gNa, gl: conductances of the potassium, sodium, and leakage channels

• VK, VNa, Vl: Reversal potential of the potassium, sodium, and leakage channels

• n, m: Activation variables

• h: Inactivation variable

The leakage channel accounts for other channel types not explicitly defined. They mod-
eled the flow of Na ions and K ions through the probability of the opening and closing of
the channels, both passive and active, the conductance of the channels and their rever-
sal potentials. For instance, the Na channel has activation and inactivation agents that are
modelled by the variablesm and h. When the neuron is at the resting potential the value of
m is approximately 0. As the membrane potential increases above the resting potential, the
gating variablem increases. Asm increases, it activates the Na channel increasing the flow
of the Na current. When the voltage returns to rest, m decays back to 0 de-activating the
channel. On the other hand, the variable h, has a large positive value at resting potential.
As the membrane potential increase to a value above -40mV, h approaches 0, therefore it
inactivates the channel. If they voltage returns to 0, h increases so that the channel under-
goes de-inactivation. The model also accurately models the post-spike hyper-polarizing
by the slow de-inactivation of the Na channel caused by the h variable. The conductance
is measured through blocking said channel, and then injecting it with an input current and
measuring its voltage. Upon dividing the input current with the voltage, we get the value
for the conductance of the channel. The reversal potential is acquired through the use of
the Nernst equation.

Unlike the Integrate-and-Fire Model, the Hodgkin-Huxley model excels when it comes
to the accurately representing the biophysics and biochemistry of the neuron as we can
easily account for additional ion channels simply by adding activation and inactivation
channels for every ion type along with their reversal potential and channel conductance. If
we know the dynamics of each channel type we can accurately model a neuron by knowing
what channels it has by studying the composition of messenger RNA extracted from the
neuron.
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3.3 Izhikevich Model

The model, published by Eugene M. Izhikevich reproduces spike outputs as accurate as the
Hodgkin-Huxley model while sacrificing the biophysical plausibility (Izhikevich, 2003).
The model is based on on fitting the spike initiation dynamics of a cortical neurons such
that the membrane potential is in mV and the time is in ms. Then upon reaching the apex
of the spike, the membrane potential is reset to a hyper-polarizing reset value determined
by prior spikes, followed by a recovery to the resting potential via the recoverability vari-
able. Surprisingly, the model accurately reproduces the spiking behavior exhibited in real
neurons, with accuracy approximate to that of the Hodgkin-Huxley model.

The model serves as a middle ground between the Integrate-and-Fire model (which
is not complex enough to model many cortical spiking patterns as described in figure 4),
and the Hodgkin-Huxley model, which is more complex and very biophysically accurate.
While the Izhikevich model allows for easy analytical use, much like the integrate-and-
fire model, the model is not biophysically accurate, and lacks in accurately simulating the
neuron on a short time scale. The model is also difficult to tune to account for different
types of neurons. It comes with 16 different presets of firing, but it’s quite difficult to tune
the model to represent a specific “real” neuron that is being worked on.

v′ = 0.04v2 + 5v + 140− u+ I (3)
u′ = a(bv − u) (4)

if v ≥ 30 mV, then

{
v ← c

u← u+ d
(5)

Figure 3: This figure shows the graph of v(t), where it spikes, juxtaposed with the graph
of u(t). Notice the inverse relationship between u and v due to the variable b, because u
is being subtracted from the derivative of v. As v increases up to the apex of the spike, u
increases slowly and at the firing time of the spike, u is rest to the value d, and v is reset to
the value c. From there the recovery time from hyper-polarization of v is dictated by the
variable a. Figure from Izhikevich (2003).

Variable Definitions:

• v′: Change in membrane potential
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• u′: Membrane potential recoverability (accounts for the activation of K+ ions and
inactivation of Na+ ion)

• a: Time scale of the recovery variable ’u’ (the larger the value, the faster the recovery)
(insert something about proportionality)

• b: sensitivity of the recovery variable ’u’ (larger values in low-threshold spiking dy-
namics and subthreshold oscillations)

• c: After spike rest value (Usually between -60 and -70 mv)

• d: After spike reset of the recovery variable (caused by Na and K conductances)

Figure 4: Various patterns of spiking present in mammalian neocortex, modeled using
the Izhikevich model. Membrane potential in blue and input current in orange under-
neath. Parameters for each model are listed below the plot. Note that these parameters
have no direct biological counterpart as the parameters in the Hodgkin-Huxley model do.
The Izhikevich parameters are simply tuned so the neuron exhibits biologically accurate
patterns. Figure adapted from Izhikevich (2004).
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4 Methods

We tested the following models: integrate-and-fire, Hodgkin-Huxley, Izhikevich (four mod-
els with patterns outlined in figure 4). Each model was fed a constant input current over-
layed with white noise and 20 trials of spike trains were generated (where each spike train
consisted of 50-100 spikes). We then computed the spike-triggered average (STA) and com-
pared them across models. We also compared the voltage graphs for each of the models to
see how spikes were visually different across the models. The timescale used is millisec-
onds.

5 Results and Discussion

In this section we compare the inputs and outputs for the 3 models: the Integrate-and-Fire
model, the Izhikevich model and the Hodgkin-Huxley model. The input current fed into
the models is a series of white noise injected over a constant current value, measured in
nA, while the voltage is what the models outputted as a result of the current, measured in
mV. The timescale used is in ms.

Figure 5: Current STA for an integrate-and-fire model fed with white noise current.
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Figure 6: Snippet from integrate-and-fire neuron model showing membrane potential over
time when the model is fed with white-noise input.

In figure 5 we can see the spike-triggered average current for the Integrate-and-Fire
model. This STA was generated by with in one trial. No further trials were needed as
the Integrate-and-Fire model consistently generated spikes, and the model was very pre-
dictable even with the introduction of noise. We can see that a spike is being produced by
the model at the exact moment where the input current increased, as the end of the STA
doesn’t decrease. This proves one of the flaws of the Integrate-and-Fire model; the bio-
physical implausibility. In real neurons, there is a time delay before the increase in current
and production of spike, while this model doesn’t display this property.
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Figure 7: Current STA for an Hodgkin-Huxley model fed with white noise current.

In figure 7 we can see the spike-triggered average current for the Hodgkin-Huxley
model. This STA was generated by computing 10 STAs of independent HH trials with
different random white noise current, and averaging the 10 STAs together. On average,
we can see that a spike produced by the model was preceded by a spike in current. Also
note that there is a slight dip shortly before the spike, which looks visually similar to a
differentiating linear kernel. This suggests that the neuronal model responds to sharp
changes in current. The average STA shows the biophysical accuracy of the HH model.
After the input reaches its peak value, there is a 10-15 ms time delay to fire a spike.
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Figure 8: Fraction of open sodium and potassium channels in HH model. The K channels
remain open for a longer period of time causing the post-spike hyper-polarization

Figure 9: Sample of the output spike train from HH model.

In figure 8 we can see the biophysical accuracy of the Hodgkin-Huxley. As discussed
in section 2.2, the sodium channels open, resulting in a voltage spike, and then potassium
channels open to re-polarize the membrane. The potassium channels stay open longer
than the sodium channels, resulting in hyper-polarization and a short refractory period
during which the neuron cannot spike.
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Figure 10: Spike-triggered-average (STA) currents for various firing patterns on the Izhike-
vich model. See figure 4 for spiking patterns. Interestingly the STAs for these various
models are all fairly similar, with slightly varying widths. Further analysis methods be-
yond STA are likely needed to uncover more differences.

In figure 10 we can see how the Izhikevich serves as a middle ground between the
integrate-and-fire model and the Hodgkin-Huxley model. All four STAs in figure 10 have
the same general shape, responding to a sharp increase in current. The STA looks like a
combination of STAs from both models. Similar to the Hodgkin-Huxley model, we see
a drop in current immediately prior to spiking, indicating that the neuron takes several
milliseconds to fire once the membrane potential exceeds the threshold. However, unlike
the Hodgkin-Huxley model, the STAs of all four Izhikevich models we investigated do not
have a small drop prior to a spike characteristic of a edge detector or differentiating linear
kernel.

6 Conclusion

As methods of of data collection improve and we are able to work with larger amounts of
data, it is important that our models are efficient enough to process massive datasets with
millisecond time accuracy. However, we must also maintain sufficient biological plausabil-
ity, referring to how well our model matches the actual neurobiology of cells as discussed
in section 2. We refer to this as the biological plausibility and computational efficiency
tradeoff. 1

1Different machines with different compute capabilities will run models at different speeds, but a universal
proxy for computational complexity is the number of floating point operations (FLOPS). A larger number of
FLOPS means the model requires more computation at each iteration. The optimal model has a low number
of FLOPS but is still biophysically accurate.
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Consider the Hodgkin-Huxley model as discussed in section 3.2. This model is incredi-
bly biophysically accurate, with differential equations for ion channels and several degrees
of freedom. However, this results in high computational complexity, making it hard to
simulate large (thousands) quantities of neurons simultaneously. 2 On the other end of
the spectrum, we have the integrate-and-fire model as discussed in section 3.1. We have
seen that although this model is not very biophysically accurate, it is very computation-
ally efficient. 3 Finally, we investigated the Izhikevich model, which can simulate spiking
many spiking patterns of actual neurons found in cortex. While these spiking patterns can
also be modeled with the HH model if the parameters are tuned properly, the Izhikevich
is orders of magnitude faster and thus opens up the possibility to simulate thousands of
spiking neurons with not a lot of computing power. 4 One tradeoff is the HH parameters
are biophysically meaningful whereas the Izhikevich parameters are only proxies for firing
dynamics.

Which model is best? In short, it depends on the problem. If the goal is to study how
neuronal behavior varies when biophysical parameters (such as ion channel conductances
and time constants), then the HH model will yield the most understandable results (Izhike-
vich, 2004). However, if the goal is to efficiently model hundreds or even thousands of cor-
tical neurons, then the integrate-and-fire or Izhikevich models will be better suited since
we have seen these are more computationally efficient. The Izhikevich model, as we have
also seen, accounts for more biophysical dynamics than the very simple integrate-and-fire
model, and can generate spiking patterns akin to those that can be produced using the
Hodgkin-Huxley model.

One possible future direction is to apply more complex analysis methods on top of the
spike-triggered average. For example, we can compute the covariance matrices for stimuli
around a spike and project spike-conditional stimuli along the leading two covariance
modes, providing more information about what specific stimuli cause the neuronal models
to spike. Another direction is to take advantage of simple models such as the Izhikevich
model and use it to simulate a fully-connected network of hundreds of cortical spiking
neurons. We could also fit a network of connected neurons to actual spike data and use it
to perform more intricate analysis.

In conclusion, biologically plausible and computationally efficient models are highly
relevant as methods of data collection improve, and we need to have at our disposal com-
putational models that are able to efficiently model hundreds or even thousands of neu-
rons.

2Each step of a Hodgkin-Huxley model takes around 1200 FLOPS.
3Each step of an integrate-and-fire model takes around 10 FLOPS.
4Each step of an Izhikevich model takes around 10-20 FLOPS
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• Integrate-and-Fire Model (3.1): Ahmed

• Hodgkin-Huxley Model (3.2): Ahmed

• Izhikevich Model (3.3): Ahmed

• Methods (4): Chase

• Results and Discussion (5): Chase and Ahmed

• Conclusion (6): Chase
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